x2+cosx+1−sinx |
x2+cosx+1 |
sinx |
x2+ cosx+1 |
令g(x)=
sinx |
x2+cosx+1 |
g(−x)=
sin(−x) |
(−x)2+cos(−x)+1 |
∴函数g(x)为奇函数,图象关于原点对称,最大值与最小值也关于原点对称,即函数g(x)的最值的和为0
∵f(x)=1-g(x)
∴M+m=1-g(x)min+1-g(x)max=2
故答案为:2
x2+cosx−sinx+1 |
x2+cosx+1 |
x2+cosx+1−sinx |
x2+cosx+1 |
sinx |
x2+ cosx+1 |
sinx |
x2+cosx+1 |
sin(−x) |
(−x)2+cos(−x)+1 |