> 数学 >
设u=f(x,y)=∫(0到xy)e^(-t^2)dt 求du
答案是du=e^(-x^2*y^2)(ydx+xdy)
人气:208 ℃ 时间:2020-04-22 17:21:59
解答
du=∂u/∂xdx+∂u/∂ydy
=e^(-x^2*y^2)∂(xy)/∂xdx+e^(-x^2*y^2)∂(xy)/∂ydy (利用对积分上限函数的求导)
=e^(-x^2*y^2)ydx+e^(-x^2*y^2)xdy
=e^(-x^2*y^2)(ydx+xdy)
祝你学业进步~
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版