> 数学 >
已知a,b,c均为正数,求证bc/a+ac/b+ab/c大于等于a+b+c
人气:456 ℃ 时间:2020-03-20 08:48:05
解答
证明:bc/a+ac/b+ab/c
=abc/a²+abc/b²+abc/c²
=abc(1/a²+1/b²+1/c²)
(1/a-1/b)²≥0
((1/a²)+(1/b²)≥2/ab ①
(1/b-1/c)²≥0
(1/b²)+(1/c²)≥2/bc ②
(1/a-1/b)²≥0
(1/a²)+(1/c²)≥2/ac ③
①+②+③
=2/a²+2/b²+2/c²≥2/ab+2/bc+2/ca
=1/a²+1/b²+1/c²≥1/ab+1/bc+1/ca
bc/a+ac/b+ab/c≥abc(1/ab+1/bc+1/ca)=a+b+c
bc/a+ac/b+ab/c≥a+b+c
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版