数学计数原理概率
以半径为1的圆内任意一点为中心做弦,求弦长超过圆内接等边三角形边长的概率
人气:182 ℃ 时间:2020-06-14 02:29:51
解答
先从几何上看:
弦长超过圆内接等边三角形边长
那么对应弦心距必然小于等边三角形边的弦心距1/2
又因为这一点是弦的中点,所以弦心距就是这点到圆心的距离
到圆心的距离小于1/2的点位于半径为1/2的同心圆内
这就变成一个几何概型,概率为两圆面积比:
P=[π(1/2)^2]/[π(1)^2]=1/4
推荐
猜你喜欢
- zhao wei and zhou xun are very s - actresses.
- 有一组数:5,10,15,20,25,30你发现了什么规律,用含有字母式子表示
- 证明自己是清白的诗
- 计算:3/4a四次方b七次方c五次方*(1/2ab三次方)*(-3bc二次方)平方
- 解方程组2x+4y+3z=9, ①3x−2y+5z=11, ②5x−6y+7z=13. ③.
- 氧化铜和碳反应在什么情况下生成CO?
- 已知点A(2-p,3+q),先将其沿x轴负方向平移3个单位长度,再沿y轴负方向平移2个单位长度,得到B(p,﹣q)
- 把128厘米的铁丝围成一个长方形,要求长比宽多18厘米.求长方形面积?