ΔABC外接圆心为O,半径为2,向量OA+OB+OC=ο,向量丨OA丨=丨0B丨,向量CA在CB上投影为
人气:334 ℃ 时间:2019-11-23 01:12:47
解答
解析,延长AO交BC与点E,交外接圆O与点D,
故,|AO|=|OD|,∠ABD=∠ACD=90°.
由于OA+OB+OC=0,|AO|=|BO|=|CO|,那么四边形BDCO为菱形,
因此,|CO|=|CD|=|BD|=2,且AD⊥BC,那么CE就是 向量CA在向量CB上的投影.
sin∠CAD=CD/AD=1/2,故,∠CAD=30°,∠ODC=60°,那么三角形OCD是等边三角形,
因此,CE=√3,也就是说,向量CA在向量CB上投影为√3.
推荐
- △ABC外接圆的半径为1,圆心为O,且2OA+AB+AC=0,丨OA丨=丨AB丨,则向量CA*CB=
- 三角形ABC的外接圆半径是1,圆心为o,且2向量OA+向量AB+向量AC=0,丨OA丨=丨AB丨则向量CA*CB=
- △ABC的外接圆的圆心为O,半径为1,且2OA+AB+AC=0,丨OA丨=丨AB丨,则向量CA在CB方向上的投影为
- 三角形ABC的外接圆圆心为O,半径为2,向量OA+AB+AC=0,且OA=AB,CA在CB方向上投影为多少
- 在三角形abc,设CB向量=a ,CA向量=b,求证S△abc=1/2√丨a丨²丨b丨²-(a×b)²
- 高数不定积分问题!
- 高中生物PCR技术中的引物A和引物B会不会互补啊
- 求 三人的英语话剧剧本.
猜你喜欢