> 数学 >
设线性方程组AX=有解,其中A是m乘n介矩阵.证明:AX=B有唯一解的充要条件是A转置与A的乘积是正定的.
人气:388 ℃ 时间:2019-08-22 16:25:36
解答
因为 AX=B有解,所以 r(A)=r(A,B)
所以此时
AX=B 有唯一解
r(A)=n
AX=0 只有零解
x≠0时 Ax ≠ 0
x≠0时 (Ax)^T(Ax) > 0 (A是实矩阵)
x≠0时 x^T(A^TA)x >0
A^TA 正定.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版