已知直角坐标系上的Q(2,0)和圆x方+y方=1,动点M到C圆的切线长与丨MQ丨的比等于根号2 求M的轨迹方程
能解析下 为什么吗 怎么得出的
人气:260 ℃ 时间:2019-12-10 10:46:46
解答
动点M(x,y)到圆C的切线长的平方=动点M到圆心C的距离的平方-R²,则:
切线长d=√[MC²-R²]
d:|MQ|=√2
d=√2|MQ|
d²=2|MQ|²
(x²+y²)-1=2×[(x-2)²+y²]
化简,得:
x²+y²-8x+9=0
这个就是动点M的轨迹方程.
推荐
- 已知直角坐标平面上点q(2,0)和圆cx号^2+y^2=1,动点m到圆c的切线长与|mq|的比等于根号2,求动点m的轨迹方程
- 已知点Q(2,0)和圆O:x^2+y^2=1,动点M到圆O的切线长与|MQ|的比为根号2,求动点M的轨迹方程
- 已知点Q(2,0)和圆O:X²+Y²=1,动点M到圆的切线长与|MQ|的比为根号2,求动点M的轨迹方程.
- 已知直角坐标系平面上一点A(2,0)和圆X^2+Y^2=1,动点M到O的切线长|MB|与|MA|的比是根号2,求动点M的轨迹%
- 已知直角坐标系中一点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长等于圆C的半径与MQ的和,求动点M的轨迹方程
- 求以地字开头爱字结尾的成语接龙
- 一汤匙多少克
- 闪电与雷声是同时产生的吗?
猜你喜欢