六边形ABCDEF的每一个内角都是120°,AF=AB=3,BC=CD=2,求DE,EF的长
人气:184 ℃ 时间:2020-03-15 12:35:16
解答
连结BD,BF,延长BF,DE交与一点G
因为每一个内角都等于120°且AF=AB=3,BC=CD=2
所以△ABF和△BCD都为底角为30°度的等腰三角形
可求得:
BD=2√3,BF=3√3,
由每一个内角都等于120°可得:
∠GEF=∠ABD=60°,∠∠BFE=GFE=∠EDB=90°
设EF=x,ED=y
则有:GE=2x,GF=√3x,BG=BF+FG=3√3+√3x=2BD=4√3
所以:x=1
DG=EG+ED=2x+y=2+y=√3BD=6
所以:y=4
所以:DE=4,EF=1
推荐
- 六边形ABCDEF的每一个内角都是120°,AF=AB=3,BC=CD=2,求DE,EF的长
- 六边形ABCDEF的每个内角都是120°,AF=AB=2,BC=CD=3,Q求DE、EF的长
- 如图,六边形ABCDEF的每一个都是120°,且AF=AB=3,BC=CD=2,求DE与EF的长.
- 如图,六边形ABCDEF的每个内角都是120°,AF=AB=2,且BC=CD=3,求DE、EF的长.
- 如图,六边形abcdef的每个内角都是120°,且AF=AB=3,BC=CD=2,求DE与EF的长
- 3 3 3 3=(1--10)在之间添符号,使之答案的1,2,3,4,5,6,7,8,9
- 照样子写词语:铅笔、钢笔、()(),儿子填了“红笔”“黑笔”,
- 一列火车3/4小时行驶60千米,照这样的速度,这列火车从甲地开往乙地要3小时.甲乙俩地相距几千米
猜你喜欢