> 数学 >
自变量的微分为什么等于自变量的增量.
设y=f(x) ,x=g(t);
则有 dy=f '(x)Δx (1) ;
Δx =g '(t)Δt+o(Δt) (2) ;
(2)代入(1) 有 dy=f '(x)g'(t)Δt+f '(x)o(Δt) (3);
但是按照微分的定义有dy=f '(x)g'(t)Δt (4) ; 得到了dy 的两种不同形式,这个是不应该存在的.
使用Δx=dx 时不存在上述问题,能得到统一的形式 dy=f '(x)dx=f '(x)g '(t)dt ;
但这里同时出现 Δx=dx 做自变量 ;Δx=dx +o(Δt) 做为函数; 在同一个问题里怎么能同时定义两种方式 ,不能白书上为什么有微分这种定义方式?
人气:305 ℃ 时间:2019-08-18 06:24:28
解答
问题出在省略的高阶无穷小.看看微分得定义:当y是x的函数时,Δy =f'(x)Δx+o(Δx),记:dy=f'(x)Δx当y是x的函数,x是t的函数时,Δy =f '(x)g'(t)Δt+f '(x)o(Δt)+o(Δx)=f '(x)g'(t)Δt+o(Δt)dy=f '(x)g'(t)Δt...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版