对于方程(1+k)x²+(1+k)y²+4(k-1)x+2(2k-1)y+4-8k=0,任取两个不等于-1的k1和k2的值,方程对应的曲线是否为圆?若不是圆,则说明理由.
人气:348 ℃ 时间:2020-03-28 23:36:03
解答
{注:形如x^2+y^2+Dx+Ey+F=0
即(x-D/2)^2+(y-E/2)^2=[D^2+E^2-4F]/4
当半径R=[D^2+E^2-4F]/4>0
则x^2+y^2+Dx+Ey+F=0的图像为圆;反之,则不是圆}
∵k1、k2≠-1 ∴k1+1、k2+1≠0
故x^2+y^2+[4(k-1)x]/(k+1)+[(4k-2)y]/(k+1)+(4-8k)/(k+1)=0
当{[4(k-1)/(k+1)]^2+[(4k-2)/(k+1)]^2-4(4-8k)/(k+1)}/4>0
则方程对应的曲线即为圆
求解的工作就留给楼主了.
注:仅供参考!
推荐
猜你喜欢
- 表示"想"的四字成语
- 销售给红星工厂甲产品100件,每件售价300元,计30000元,增值税销售项税额5100元,款项己收银行存款户
- 火星—地球之间有什么关系?
- 某工厂去年实际产值2400万元,比计划增长3/5,计划产值多少万元?
- 鸡的脚比兔的脚少24只,鸡有多少只,兔有多少只?
- 为你的幸福,我会不惜一切代价英文怎么说?
- 关于正方形剪成三角形的问题
- 某市中学生举行足球赛,共赛17轮,计分方法是胜一场得3分,平一场得1分,负一场得0分,在这次足球赛中,若