填空!三条直线相交于一点,共可组成()对对顶角.
三条直线相交于一点,共可组成()对对顶角.若三条直线两两相交,但未必相交于同一点共可组成()对对顶角.一般的,n(n≥2)条直线两两相交,共可组成()对对顶角.
三个空都要!
人气:408 ℃ 时间:2020-04-09 06:31:10
解答
原理:
任意两条直线组成一对对顶角.
所以:
三条直线相交于一点,共可组成(6)对对顶角.若三条直线两两相交,但未必相交于同一点共可组成(3)对对顶角.一般的,n(n≥2)条直线两两相交,共可组成(Cn2=n*n-1*n-2.*3*2)对对顶角.
Cn2:2在上脚标位置,概率论里面的.
推荐
- 平面上有3条直线两两相交,可组成多少对对顶角?4条呢?n条呢?
- 如图(1)两条直线相交于一点,有_对对顶角; 如图(2)三条直线相交于一点,请写出所有对顶角; 如图(3)n条直线相交于一点,有_对对顶角.
- 三条直线相交于一点,共可组成()对对顶角.若三条直线两两相交,但未必相交于同一点共可组成()对对顶
- 三条直线相交于一点,能构成几对对顶角?四条呢?五条呢?n条呢?
- N条直线相交于一点,则可构成几对对顶角?
- 熵减是什么意思?
- 一项工程,甲队单独做要20小时,乙队单独做要30小时,现在由乙队先做5小时,然后甲队加入一起做,
- 硝酸钡与碳酸钾的反应方程式
猜你喜欢