矩阵乘法的几何意义
最好提供一些矩阵乘法的变换例子,急用!
人气:326 ℃ 时间:2020-05-19 05:36:23
解答
空间中可以用向量组(如顶点的集合)表示一个几何形状,也可以用方阵来表示一个变换,比如把一个几何形状扩大,缩小,旋转,平移等等,C=AB,就是说C是向量组A经过了B变换得到的结果,B变换的逆变换是B的逆矩阵,A=CB^(-1)就把A变回来了.如果B不可逆,就说这个变换是不可逆的,如投影变换.
如二维平面的旋转公式矩阵是T=[cos(phi) sin(phi)/-sin(phi) cos(phi)]
(“/”表示下一行)
那么要把向量[x / y],逆时针转phi角就可以表示为:
[x' / y']=T[x / y]
CAD/CAM的课程会有比较详细的介绍.
推荐
猜你喜欢
- 燃料酒精制作过程
- 当电阻增大时电压会变吗?
- 葡萄糖转化为多糖在高等生物体内在什么中进行
- 怎样计算昼长和夜长啊?比如,某地日出时间为9点,求昼长!但书上有公式昼长时数=(12-日出时间)乘2=(日落时间-12)乘2,我用这个计算出的结果不一样啊!
- 已知:如图,PA,PB,DC分别切⊙O于A,B,E点. (1)若∠P=40°,求∠COD; (2)若PA=10cm,求△PCD的周长.
- 仿写句了:如果你是一棵大树,就撒下一片阴凉;如果你是一泓清泉,就滋润一方土地;( )
- keep,remain和retain的区别
- 已知数列 是首项为1,公差为2的等差数列,,在ak与ak+1之间插入2^(k-1)个2,得到新数列 ,