已知圆O中,AB为直径,弦BC=4√3cm,则弦AC的弦心距是?
人气:381 ℃ 时间:2020-01-25 05:44:00
解答
2√3cm 证明:过O点做OE垂直CB于E OF垂直AC于F 连接OC 则OC=OB(都是半径) 因为AB是直径 所以∠ACB=90°又∠OFC=∠OEC=90° 所以四边形OFCE为矩形 所以CE=OF
因为OC=OB OE垂直CB 所以CE=EB=CB/2=2√3cm 所以OF=2√3cm 即弦AC的弦心距为2√3cm
推荐
- 已知AB是圆O的直径,弦BC的弦心距为4,那么AC的长为?
- 在⊙O中,AB是直径,弦AC的弦心距为3,那么BC的长为_.
- AB是圆O的直径,弦BC等于4,那么弦AC的弦心距等于几?
- 已知圆O的直径AB=6CM,弦AC与AB的夹角为30°,求弦BC的长和弦BC的弦心距
- 已知圆O的直径AB=6cm,弦AC与AB的夹角是30°,求弦BC的长和BC的弦心距
- 字母后面的数字是平方数,直接写答案就好,给出70%以上题目答案即可(当然,全部答出来最好)
- major 和important在用做重要的意思时的区别
- 绿色由什么色组成
猜你喜欢