设O为坐标原点,F为抛物线y^2=4x的焦点,A为抛物线上一点,若向量OA*向量AF=-4,则点A的坐标是?
两个向量相乘小于0,证明是钝角,那么应该A点的横坐标在(0,1)内啊
两个向量相乘小于0,证明是钝角,那么应该A点的横坐标在(0,为什么不对
人气:468 ℃ 时间:2019-10-19 15:15:32
解答
【解】
由题意知:F(1,0)
设点A的坐标为(x,y),则向量OA=(x,y),向量AF=(1-x,-y).
∵向量OA*向量AF=-4
∴x(1-x)-y^2=-4,即-x^2+x-4x=-4,x^2+3x-4=0
解得:x1=1,x2=-4(抛物线开口向右,故舍去)
此时y=±2,即点A的坐标是(1,2)或(1,-2).
【说明】
向量OA*向量AF=-4,说明向量OA与向量AF的夹角为钝角.
但向量的夹角是指把两个向量的起点放在同一位置时形成的,
你画出图形可以看一下,向量OA与向量AF的夹角应该是指
线段AF与线段OA延长线之间的夹角,那是个钝角,
则∠OAF就它的补角,所以∠OAF是锐角.
推荐
- 已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若OA•AF=-4,则点A的坐标是_.
- 抛物线y^2=2x与过焦点F的直线交于A,B两点求向量OA*OB(O为原点)
- 以O为坐标原点,抛物线y^2=2x与过其焦点的直线交于A、B两点,则向量OA乘向量OB等于
- 设原点坐标为O,抛物线y^2=4x与过焦点的直线交于A,B两点,求向量OA乘以向量OB等于多少
- 设坐标原点是O,抛物线Y^2=2X与过焦点的直线交于AB两点,则向量OA乘以向量OB等于( ).
- 天文单位、平方度和光年有什么不同?
- 已知等腰三角形abc中ab等于ac=10cm,BC=12cm,求三角形外接圆的半径
- 质数乘质数是什么数
猜你喜欢