(1)当∠DCE=35°时,
∵∠ACE=∠ACD-∠DCE=90°-35°=55°,
∴∠ACB=∠ACE+∠ECB=55°+90°=145°;
当∠DCE=60°时,
∵∠ACE=∠ACD-∠DCE=90°-60°=30°,
∴∠ACB=∠ACE+∠ECB=30°+90°=120°;
故答案是:145°,120°;
(2)∵∠ACE=∠ACD-∠DCE=90°-n°,
∴∠ACB=∠ACE+∠ECB=(90°-n°)+90°=180°-n°.
即:∠ACB=180°-n°;
(3)∠ACB=180°-∠DCE.