一,32(a^2-b^2)^2-18(a^2+b^2)^2
=2[ (4a^2-4b^2)^2-(3a^2+3b^2)^2]
=2(7a^2-b^2)(a^2-7b^2)
=2(√7a+b)(√7a-b)(a+√7b)(a-√7b)
二,25(x-2y)平方-4(3x+y)平方
=(5x-10y)^2-(6x+2y)^2
=(11x-8y)(-x-12y)
三,x^2+(a+1)x+a
=(x+1)(x+a)
四,(x^2+3x+4)(x^2+3x-2)+8
=(x^2+3x)^2+2(x^2+3x)-8+8
=(x^2+3x)(x^2+3x+2)
=x(x+1)(x+2)(x+3)
五,、(x-5)(x+4)(x+8)(x-10)+18x^2
=(x-5)(x+8)(x+4)(x-10)+18x^2
=(x^2-40+3x)(x^2-40-6x)+18x^2
=(x^2-40)^2-3x(x^2-40)-18x^2+18x^2
=(x^2-40)(x^2-3x-40)
=x(x-40)(x-8)(x+5)
六、(x+1)(2x+1)(3x-1)(4x-1)-14x^4
=(x+1)(3x-1)(2x+1)(4x-1)-14x^4
=(3x^2+2x-1)(8x^2+2x-1)-14x^4
=(2x-1)^2+11x^2(2x-1)+24x^4-14x^4
=(2x-1)^2+11x^2(2x-1)+10(x^2)^2
=(x^2-2x+1)(10x^2-2x+1)
=(x-1)^2 *(10x^2-2x+1)
七、八、九、十一、十三,十四都是待定系数法.你可以直接设(mx+ny+t)(qx+oy+u)然后对应系数相等
也可以先不看z,不看常数项,只把xy的二次项分解,再待定
七、x^2+4xy-5y^2=(x-y)(x+5y)
设x平方+4xy-5y平方-5x+17y-14=(x-y+m)(x+5y+n)
5m-n=17
m+n=-5
mn=-14
m=-2,n=7
(x-y-2)(x+5y+7)
八,2x平方-5xy+2y平方-xz-yz-z平方
2x^2-5xy+2y^2=(x-2y)(2x-y)
设2x^2-5xy+2y^2-xz-yz-z^2=(x-2y+mz)(2x-y+nz)
2m+n=-1
-m-2n=-1
mn=-1
m=-1 n=1
(x-2y-z)(2x-y+z)
九,题目错了.
十,原式=(x+y)^2-5(x+y)-14
=(x+y-7)(x+y+2)
十一,(x+3y+2)(x-2y-3)
十二,12x平方+10xy-12x+5y-9
=(10xy+5y)+12x^2-12x-9
=(2x+1)(5y+6x-9)
十三,x平方-y平方-2x-4y-3
=(x^2-2x+1)-(y^2+4y+4)
=(x+1)^2-(y+2)^2
=(x+y+3)(x-y-1)
十四,(2x-5y+3)(5x+y-1)
十五、6x平方+5xy-6y平方-6xz+4yz
=(3x-2y)(2x+3y)-2z(3x-2y)
=(3x-2y)(2x+3y-2z)