设圆的方程为:x^2+y^2+ax+by+d=0.
x=0时有:y^2+by+d=0.设两根为:y1,y2,则在Y轴的截距为:
|y1-y2|=√(y1-y2)^2=√((y1+y2)^2-4y1*y2)=√(b^2-4d).
同理:在X轴的截距为:√(a^2-4d).
所以:
√(a^2-4d)+√(b^2-4d)=14.又圆经过点A(4,-2)、B(-1,3)两点,所以:
4a-2b+d=-20
a-3b-d=10.推出:a=b-2,d=-2b-12.代人√(a^2-4d)+√(b^2-4d)=14.中有:
√(b^2+4b+52)+√(b^2+8b+48)=14.即:6b^2+37b+6=0.
解得:b=-6或b=-1/6.
所以:a=-8,b=-6,d=0.或者a=-13/6,b=-1/6,d=-35/3.
所以圆的方程为:
x^2+y^2-8x-6y=0或者:
6x^2+6y^2-13x-y-70=0.