已知三角形ABC的三个内角A B C成等差数列
其外接圆半径为1且有sinA-sinC+根号2/2cos(A-C)=根号2/2 求A的大小 求三角形ABC的面积
人气:256 ℃ 时间:2019-08-26 06:35:09
解答
等差数列的性质知道A+C=2B所以B=60
如果没猜错的话,原式应该是
sinA-sinC+√2[cos(A-C)]/2=√2/2
移项得
sinA-sinC=√2/2*[1-cos(A-C)]
左边用和差化积,右边用(好像没有名字~)可以说是半角公式.
2sin[(A-C)/2]cos[(A+C)/2]=√2/2*2sin^2[(A-C)/2]
而因为
B=60,所以A+C=120
则cos[(A+C)/2]=1/2
所以原式化为
sin[(A-C)/2]=√2*sin^2[(A-C)/2]
移项可得
sin[(A-C)/2]*{√2*sin[(A-C)/2]-1}=0
1```当sin[(A-C)/2]=0时
则A=C=60
三角形ABC为等边三角形.
此时的三角形面积为S=2R^2sinA*sinB*sinC=(3√3)/4
2```当]√2*sin[(A-C)/2]-1=0时
既sin[(A-C)/2]=√2/2
所以
只能是(A-C)/2=45
所以A-C=90
且A+C=120
所以
A=105
C=15.
此时的三角形面积为
S=2R^2sinA*sinB*sinC=√3/4
推荐
- 已知△ABC的三个内角A、B、C成等差数列,a、b、c分别为△ABC所对的边.求证:1/a+b+1/b+c=3/a+b+c(注:可以用分析法证明)
- 已知三角形abc三内角a,b,c成等差数列,求证:对应三边a,b,c满足1/(a+b)+1/(b+c)=
- 已知△ABC的三个内角A、B、C成等差数列,a、b、c分别为△ABC所对的边.求证:1/a+b+1/b+c=3/a+b+c(注:可以用分析法证明)
- 已知三角形ABC的三个内角A,B,C成等差数列,其外接圆半径为1,且有……
- 已知在三角形ABC中,三个内角A,B,C成等差数列,求证1/(a+b)+1/(b+c)=1/(a+b+c)
- 求一篇英语作文,最好是原创,the positive and negative impacts of tourism,300字左右~
- 童心向党——做一个有道德的人 这篇作文怎么写?
- 若(sina)^2+2(sinb)^2=2cosx 求(sina)^2+(sinb)^2的最大值和最小值?
猜你喜欢