已知数列{c
n}的通项是c
n=
,则数列{c
n}中的正整数项有( )项.
A. 1
B. 2
C. 3
D. 4
人气:330 ℃ 时间:2020-06-20 10:55:07
解答
∵数列{cn}的通项是cn=4n+312n−1,∴c1=4+312−1=35,c2=8+314−1=13,c3=12+316−1=435,c4=16+318−1=477,c5=20+3110−1=519,c6=24+3112−1=5,∵{cn}是减数列,∴假设cn=4n+312n−1=4成立,则4n+31=8n-4...
推荐
- 若数列{an}满足:对任意的n∈N﹡,只有有限个正整数m使得am<n成立,记这样的m的个数为(an)+,则得到一个新数列{(an)+}.例如,若数列{an}是1,2,3…,n,…,则数列{(an)+}是0,1,2,…,n-1…已知对任意的n
- 设Sn为数列{an}的前n项和,若S2n/Sn(n属于正整数)是非零常数,则该数列为“和等比数列”.………………若数列{Cn}是首项为c1,公差为d(d不等于0)的等差数列,且数列{Cn}起“和等比数列”,试探究d与c1之间的等量关系.
- bn=a^(2n-1),求bn的前n项和Sn(a为常数)
- 已知数列{an}满足a1=1 a2=3 且a(n+2)=(1+2|cosnπ/2|)an+|sinnπ/2|,n为正整数
- 高中二轮复习数学数列,
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢