a = 4,b = 0,c = 1或a = 4,b = 0,c = -1
a+b+c = 5或3.
a-2b=4 ......a = 2b + 4 ,代入另一式:
b(2b + 4) + c^2 - 1 = 0
2(b^2 + 2b) + c^2 - 1 = 0
2(b + 1)^2 + c^2 = 3
因a,b,c都是整数,那么(b + 1)^2 和 c^2也是整数.有以下几种可能:
(1)b + 1=1,c^2 = 1.此时,b = 0,a = 4,c = 1或-1
(2) b + 1=0,c不是整数,不可能
(3)b + 1=-1,c^2 = 1.此时,b = -2.根据a-2b=4求得a = 2,代入ab+cc-1=0求得c^2 = 5,不符.
综上,a = 4,b = 0,c = 1或a = 4,b = 0,c = -1
则a+b+c=5或3