因为此方程是关于x的一元二次方程,
所以,k≠6,k≠9,
于是有:x1=
9 |
6−k |
6 |
9−k |
由①得k=
6x1−9 |
x1 |
9x2−6 |
x2 |
∴
6x1−9 |
x1 |
9x2−6 |
x2 |
整理得x1x2-2x1+3x2=0,
有(x1+3)(x2-2)=-6.
∵x1、x2均为整数,
∴
|
故x1=-9,-6,-5,-4,-2,-1,0,3.
又k=
6x1−9 |
x1 |
9 |
x1 |
将x1=-9,-6,-5,-4,-2,-1,3分别代入,得
k=7,
15 |
2 |
39 |
5 |
33 |
4 |
21 |
2 |
9 |
6−k |
6 |
9−k |
6x1−9 |
x1 |
9x2−6 |
x2 |
6x1−9 |
x1 |
9x2−6 |
x2 |
|
6x1−9 |
x1 |
9 |
x1 |
15 |
2 |
39 |
5 |
33 |
4 |
21 |
2 |