倒数法求值,
已知x/x^-x+1=5,求x^/x的四次方+x^+1的值?
人气:316 ℃ 时间:2020-02-03 17:58:32
解答
因为x/(x^2-x+1)=5,所以(x^2-x+1)/x=1/5,即 x-1+1/x=1/5,x+1/x=6/5,故 (x+1/x)^2 = 36/25,即 x^2 + 2 + 1/x^2 = 36/25,所以 x^2 + 1/x^2 = 36/25 -2 = -14/25,因此 x^2 + 1 + 1/x^2 = 1 -14/25 = 11/25,即 (x^4+x^2+...
推荐
猜你喜欢