>
数学
>
如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.
求证:
(1)△ABC≌△ADC;
(2)BO=DO.
人气:249 ℃ 时间:2019-08-16 22:47:43
解答
证明:(1)在△ABC和△ADC中,
∠1=∠2
AC=AC
∠3=∠4
,
∴△ABC≌△ADC(ASA);
(2)∵△ABC≌△ADC,
∴AB=AD.
又∵∠1=∠2,AO=AO,
即
AB=AD
∠1=∠2
AO=AO
,
∴△ABO≌△ADO(SAS).
∴BO=DO.
推荐
如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证: (1)△ABC≌△ADC; (2)BO=DO.
如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证: (1)△ABC≌△ADC; (2)BO=DO.
如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证: (1)△ABC≌△ADC; (2)BO=DO.
如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为_.
如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证: (1)△ABC≌△ADC; (2)BO=DO.
根据所学课文,解释下列成语.1、引喻失义:2、妄自菲薄:3、心旷神怡:4、政通人和:
根号12+根号27除以再根号3等于多少
如果一个人站在电梯里 那么此时电梯的总重量是不是人+电梯的重量?
猜你喜欢
英语翻译
《青蛙军团爱地球》(伍美珍) 《爱找东西的男孩》(郁雨君) 《天使在身边》(商晓娜) 《书香童年—丁香
英语翻译
first thing first
不同PH值的溶液的配制(PH=3-13)
用swim across造句
sort
这是世界上最美丽的陵墓-泰姬陵.人们称她是"大理石上的诗".印度诗人泰戈尔说她是"永恒面颊上的一滴眼泪"这是为什么呢?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版