y=xsinx/1+tanx函数的微分
人气:377 ℃ 时间:2020-04-14 20:15:32
解答
y=xsinx/(1+tanx)
=x/(1/sinx+1/cosx)
=x/(secx+cscx)
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
y' = [(secx+cscx)-x(tanx·secx-cotxcscx)] / (secx+cscx)^2
所以:dy= {[(secx+cscx)-x(tanx·secx-cotxcscx)] / (secx+cscx)^2}dx
推荐
猜你喜欢
- 表示"想"的四字成语
- 销售给红星工厂甲产品100件,每件售价300元,计30000元,增值税销售项税额5100元,款项己收银行存款户
- 火星—地球之间有什么关系?
- 某工厂去年实际产值2400万元,比计划增长3/5,计划产值多少万元?
- 鸡的脚比兔的脚少24只,鸡有多少只,兔有多少只?
- 为你的幸福,我会不惜一切代价英文怎么说?
- 关于正方形剪成三角形的问题
- 某市中学生举行足球赛,共赛17轮,计分方法是胜一场得3分,平一场得1分,负一场得0分,在这次足球赛中,若