(x1+x2+x3…+xn)^n展开式的通项公式
内个……1 2 3 n是下标…………
人气:213 ℃ 时间:2020-03-27 20:19:12
解答
(x1+x2+x3…+xn)^n
=[x(1+2+3+...+n)]^n
=x^n[(1+n)*n/2]^n
=x^n*(1+n)^n*n^n/2^n
推荐
- 已知X1,X2,X3,...Xn中每一个数值只能取-2,0,1中的一个,且满足:X1+X2+X2+...+Xn=-17,X1²+X2²+X3²+...+Xn²=37
- 一列数:X1、X2、X3、.、Xn、Xn+1、.,其中X1=3 (1)如果对任意的n,有Xn+1=Xn+2 计算X2=( )
- x1 :x2 :x3 :……:什么公式?
- 证明|X1+X2+X3+X4+...+Xn+X|>=|X|-(|X1|+|X2|+...+|Xn|)
- X2/X1(X1+X2)+X3/(X1+X2)(X1+X2+X3)+.Xn/(x1+x2+...Xn-1)(X1+X2...+Xn)
- 2.37的立方根是1.333 23.7的立方根是2.872 那0.0237的立方根是多少?
- 城市化步伐的快速发展,使得生活节奏加快.生活水平的不断提高,家庭庭院也更多的出现在现代人的生活之中.庭院的设计五花八门,由于种种原因,往往缺乏合理的环境设计, 缺乏景观植物的种植设计,致使庭院环境不甚理想.如何改变这种尴尬局面,合理布置有限
- 英语翻译
猜你喜欢