f(1)+f(2)+…+f(59)=(f(1)+f(59))+(f(2)+f(58))+……+(f(29)+f(31))+f(30);
对于任意的i=1,2,……29,有:
f(i)+f(60-i)
=cosi/cos(30-i)+cos(60-i)/cos(-30+i)
=(cosi+cos(60-i))/cos(30-i)
=[cos(30-(30-i))+cos(30+(30-i))]/cos(30-i)
=[cos30cos(30-i)+sin30sin(30-i)+cos30cos(30-i)-sin30sin(30-i)]/cos(30-i)
=2cos30cos(30-i)/cos(30-i)=2cos30°;
所以:
f(1)+f(2)+…+f(59)=(f(1)+f(59))+(f(2)+f(58))+……+(f(29)+f(31))+f(30)=59cos30°=59根号3/2;