已知向量a,b是平面内两个单位向量,且a,b的夹角为60°,若向量a-c与b-c的夹角为120°,则|c|的最大值是
人气:220 ℃ 时间:2020-04-04 15:46:15
解答
将a,b,c三条向量的起点平移到原点即OA=a,OB=b,OC=c,因为a,b的夹角为60°,a-c与b-c的夹角为120°,所以OABC四点共圆,圆心为△OAB的外心,不过△OAB是正三角形,所以圆心到点O的距离为sqrt(3)/3,OC的最大值即为2/sqrt(3).
推荐
- 如题,已知a、b是平面内两个单位向量,且 a、b 的夹角为 60°,若向量 a-c 与 b-c 的夹角为 120°,求c的模的最大值
- 如题,已知a、b是平面内两个单位向量,且 a、b 的夹角为 60°,若向量 a-c 与 b-c 的夹角为 120°,求c的模的最大值
- 已知a b是平面内两个互相垂直的单位向量 向量c满足(a-c).(b-c)=0 则|c|的最大值~
- 已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b-c)=0则|c|的最大值是?
- 已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a+c)*(b+c)=0,则|c|的最大值是?
- 解方程:(x²-x)-4(x²-x)-12=0
- 什么叫卤族元素?
- 带“像”的就是比喻句吗?
猜你喜欢