设椭圆 x²/8+y²/4=1 的弦为AB,A.B的坐标分别是(x1,y1) (x2,y2)
因为AB的斜率为2,设AB所在直线的方程是 y=2x+b
代入椭圆方程,得
x²+2(2x+b)²=8
x²+8x²+8bx+2b²=8
9x²+8bx+2b²-8=0
由于,A,B在椭圆上,因此 x1,x2是这个方程的两个根
x1+x2= -8b/9
y1+y2=2(x1+x2)+2b =-16b/9+2b=2b/9
设AB的中点为P(x,y)
则
x=(x1+x2)2
y=(y1+y2)/2
那么 y/x=(2b/9)/(-8b/9)=-1/4
所以,所求的AB中点的轨迹方程是
y=-1/4 x