1.点A、B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于MB的绝对值,求椭圆上的点到点M的距离d的最小值.
2.若点O和点F分别为椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OP*向量FP的最大值为?
人气:457 ℃ 时间:2020-04-26 16:59:36
解答
1、(1)设P(x,y)
则向量AP=(x+6,y),向量PF=(x-4,y)
因为PA⊥PF,所以向量PA*向量PF=0,
即x^2+2x-24-y^2=0
又x^2/36+y^2/20=1
联立解得:x=-6(舍去)或3/2
将x=3/2代回,y=(5√3)/2
所以P为(3/2,(5√3)/2)
(2)设MQ⊥AP于Q,MQ=MB=m
由题意得:PF=5
因为△FPA∽△MQA
所以m/(12-m)=5/10
m=4,M坐标为(2,0)
设圆上一点X(x,y),
则XM^2=(x-2)^2+y^2=((x-9/2)^2)*4/9+15
当x=9/2时,
XM取得最小值√15
2、设P为(x,y)
向量OP=(x,y),向量FP=(x+1,y)
则向量OP*向量FP=x^2+x+y^2=((x+2)^2)/4+2
当x=2时,最大值为6
推荐
- 1.已知椭圆方程为x^2/9+y^2/4=1,在椭圆上是否存在点P(x,y)到定点A(a,0)(其中00),直线L为圆O:x^2+y^2=b^2的一条切线,记椭圆C的离心率为e.
- 已知A,B,C是椭圆m:x^2/a^2+y^2/b^2=1(a>b>0)上的三点,其中点A的坐标为(2√3,0),BC过椭圆的中心,且向量AC*向量BC=0,|向量BC|=2|向量AC
- 椭圆x²/a²+y²/b²=1的焦点为F1(-1,0) F2(1,0)直线L:x=a²上有两点M,N且F1M⊥F2N
- 高中数学题:与椭圆有关
- 已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率
- 已知向量a,b满足向量a的模=1,向量a*(向量a-向量b)=0,则向量b的模的取值范围是?
- 解释下面加点词的意思
- gee,do i know u,that such emotional young man
猜你喜欢