
∵∠ABM+∠MBT=90°,
∠OTB+∠MBT=90°,
∴∠ABM=∠OTB,则△BAM∽△TOB,
∴
AM |
OB |
MB |
BT |
AM |
MB |
OB |
BT |
令DN=1,CT=MD=K,则:AM=2-K,BM=
4+(2−K)2 |
代入①中得:4+(2-K)2=2(2-K)(2+K),
解方程得:K1=0(舍去),K2=
4 |
3 |
∴AM=2-
4 |
3 |
2 |
3 |
tan∠ABM=
AM |
AB |
| ||
2 |
1 |
3 |
故答案是:
1 |
3 |
AM |
OB |
MB |
BT |
AM |
MB |
OB |
BT |
4+(2−K)2 |
4 |
3 |
4 |
3 |
2 |
3 |
AM |
AB |
| ||
2 |
1 |
3 |
1 |
3 |