∴∠B=∠ACB=45°,
∵BD=BA,
∴∠BAD=∠BDA=
1 |
2 |
∵CE=CA,
∴∠CAE=∠E=
1 |
2 |
在△ABE中,∠BAE=180°-∠B-∠E=112.5°,
∴∠DAE=∠BAE-∠BAD=112.5°-67.5°=45度;
(2)不改变.
设∠CAE=x,
∵CA=CE,
∴∠E=∠CAE=x,
∴∠ACB=∠CAE+∠E=2x,
在△ABC中,∠BAC=90°,
∴∠B=90°-∠ACB=90°-2x,
∵BD=BA,
∴∠BAD=∠BDA=
1 |
2 |
在△ABE中,∠BAE=180°-∠B-∠E,
=180°-(90°-2x)-x=90°+x,
∴∠DAE=∠BAE-∠BAD,
=(90°+x)-(x+45°)=45°;
(3)∠DAE=
1 |
2 |
理由:设∠CAE=x,∠BAD=y,
则∠B=180°-2y,∠E=∠CAE=x,
∴∠BAE=180°-∠B-∠E=2y-x,
∴∠DAE=∠BAE-∠BAD=2y-x-y=y-x,
∠BAC=∠BAE-∠CAE=2y-x-x=2y-2x,
∴∠DAE=
1 |
2 |