复数的引入有什么意义?
人气:237 ℃ 时间:2020-04-15 22:43:50
解答
复数的引入具有非常重要的意义 复变函数学就是以虚数i和e构成的学问 当然 其内容非常的深奥 曾经有位数学家认为数学里有5个数 这个5个数构成了整个数学 它们是0 1 e π i 非常有意思的是 e^(πi)+1=0 这里 就运用了复变函数的感念
尽管复数看起来如此深奥 实际上 在某些贴近你的领域的运用还是非常之多 比如平面几何 平面解析几何 实轴和虚轴组成的复平面把数的概念从一维引入了二维 并且引入了方向的概念 这一点 在物理的受力分析中可以提供一个捷径(这一点 在高中物理竞赛中有所运用) 由于是复数是二维的 GPS系统等处理坐标问题是都涉及复数
的确 它在生活中的运用不多(其实sin cos一类运用不是也不多吗) 但是 在数学领域中 它确是不可或缺的
推荐
猜你喜欢
- 有一批书,分给公司的所有人,若每人一本,则还差19本,若每个部门派7本,则多出1本,如果再招聘2个人进公司,则正好每个部门有9人,问:总共有( )个部门.
- 满足条件{1}包含于A包含于{1,2,3,4}的集合A的个数为、(能给一下解析过程吗)
- 用千里迢迢,娓娓动听,大名鼎鼎,风尘仆仆,文质彬彬组织成一句话,不少于100字
- 七大洲中跨经度最广的是_,跨纬度最广的是_.
- as...as possible组句
- Let's send her a computer game改为同义句
- 用描点法画出y=-1/2x²的函数图象并指出函数图象的变化趋势
- 已知m^2+m-1=0,求代数式m^3+5m^2+3m-2012的值