已知:关于x的一元二次方程x2-2(2m-3)x+4m2-14m+8=0,
(1)若m>0,求证:方程有两个不相等的实数根;
(2)若12<m<40的整数,且方程有两个整数根,求m的值.
人气:492 ℃ 时间:2019-10-24 03:43:16
解答
证明:(1)△=b
2-4ac=[-2(2m-3)]
2-4(4m
2-14m+8)=8m+4,
∵m>0,
∴8m+4>0.
∴方程有两个不相等的实数根.
(2)由求根公式得:
x==(2m−3)±∵方程有两个整数根,
∴必须使
为整数且m为整数.
又∵12<m<40,
∴25<2m+1<81.
∴5<
<9.
令
=6,∴m=
令
=7,∴m=24
令
=8,∴m=
∴m=24.
推荐
猜你喜欢
- 已知X的平方-3X+2=0,求x2+X2分之1的值
- 某人骑自行车上学,若速度为15km/h,则早到15min,若速度为9km/h,则迟到15min,先打算提前10min到达,自行车的速度应为多少?
- 读书不觉已春深 下一句 求
- 在10%的利率下,一元三期的复利现值系数分别是0.9091,0.8264,0.7513,则三年期的年金现值系数是?
- There is a library in our school对a提问
- mghco3和mgco3的溶解度大小比较?
- 筷子是一个杠杆,那么它的支点在哪里?说理由
- 三角形三边之和为10,其夹角的余弦是方程2X^2-3X-2=0的根······