在1到100的自然数中有多少个能被2或3整除的数?
人气:164 ℃ 时间:2019-08-16 21:12:43
解答
设集合A为能被2整除的数组成的集合,集合B为能被3整除的数组成的集合,
则A={x|x=2n,n∈N+,1≤x≤100},B={x|x=3n,n∈N+,1≤x≤100},
则A∪B={x|x=2n,或x=3n,n∈N+,1≤x≤100},A∩B={x|x=6n,n∈N+,1≤x≤100},
显然集合A中元素的个数为50,集合B中元素的个数为33,集合A∩B中元素的个数为16,
可得集合A∪B中元素的个数为50+33-16=67.
推荐
猜你喜欢
- x+y=1,则代数式½x²+xy+½y²的值是什么
- 15%相当于25%的( )%
- 若cos(pai+a)=-1/3,那么sin(3pai/2-a)=
- 在语文课程总目标中为什么要强调课外阅读,并且规定九年课外阅读总量应在400万字以
- 在三角形ABC中,角ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.试探究:当三角形ABC满足什么条件时,CF垂直于BC(点C、FC重合除外)?画出相应图形,并说明理由
- 过氧根和超氧根的计算
- zyz/where the skies are blue ,to see you once again .
- 原电池正负极与电解池正负极一样吗?