> 数学 >
【高中数学】已知椭圆C的中心在原点,焦点在x轴上,离心率e等于二倍根号5除以5,
它的顶点恰好是抛物线x的平方等于4y的焦点.
(1)求C的标准方程
(2)过C的右焦点F作直线l交椭圆C 于A、B两点,交y轴于M点.若向量MA=aAF,MB=bBF,求证:a+b为定值.
第一问会了,第二问怎么做啊各位大哥大姐大叔叔们!
人气:130 ℃ 时间:2019-09-24 04:50:18
解答
(1)x²+5y²-5=0
(2)右焦点F(2,0)
设直线AB:y=k(x-2)与x²+5y²-5=0联立消去x得:
x²+ 5k²(x-2)²-5=0,即(5k²+1)x²-20k²x+20k²-5=0
设A(x1,y1),B(x2,y2),M(0,m)
X1+X2=20k²/(5K²+1),(1)X1X2=(20K²-5)/(5k²+1)(2)
∵向量MA=aAF, MB=bBF
∴(x1,y1-m)=a(2-x1,-y1),(x2,y2-m)=b(2-x2,-y2)
∴x1=a(2-x1),x2=b(2-x2)
∴a=x1/(2-x1),b=x2/(2-x2)
则 a+b=x1/(2-x1)+ x2/(2-x2)
=2[(x1+x2)-x1x2]/[4-2(x1+x2)+x1x2]
∵(x1+x2)-x1x2
=20k²/(5K²+1)-(20K²-5)/(5k²+1)
= 5/(5k²+1)
4-2(x1+x2)+x1x2
=4-40k²/(5K²+1)+(20K²-5)/(5k²+1)
=-1/(5k²+1)
∴a+b=[2*5/(5k²+1)]/[-1/(5k²+1)]=-10
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版