在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
人气:124 ℃ 时间:2019-10-17 00:36:10
解答
(1)直接填写:a= b= 顶点C的坐标为\x0d(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;\x0d(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
推荐
- 如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D
- 如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
- 在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(1,0)和B(x,0),顶点为P.
- 在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A,B两点(点A在点B的左侧),与Y轴交于点C,顶点为E.
- 如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M. (1)求b、c的值; (2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平
- 古代神话的人物有什么特点
- 高铁能充电吗二等座
- 比较下列各数的大小(要写出解题过程).
猜你喜欢