设α为n维列向量,α^Tα=1,方阵A=E-αα^T,试证|A|=0
人气:209 ℃ 时间:2020-04-02 23:31:38
解答
右乘α 得 Aα=α-αα'α=α-α=0
下面反证
A为方阵,假设|A|≠0
则A可逆 即 α=0;这明显与α‘α=1矛盾 假设不成立
故|A|=0
推荐
- 设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵
- 矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.
- 证明:设A是一个n阶方阵,如果对任一个n维向量x,都有Ax=0,那么A=0
- 证明:设A为n阶方阵,对于任意一个n维向量x=(x1,x2,…xn)T都有Ax=0,则A=0
- 设n维向量α(a,0,0.0,a),a
- y=(sinx)^x(sinx>0) 求导
- 谁能告诉下 氧化钙和碳酸钾在水中互相反应的方程式.
- 李老师有2元,5元,10元的````小学六年级上册填空题
猜你喜欢