> 数学 >
求微分方程y''-2y'=e^2x的通解
人气:344 ℃ 时间:2020-04-06 22:27:08
解答
特征方程
r^2-2r=0
r=0,r=2
所以齐次通解为
y=C1x+C2e^(2x)
由于非齐次右边含在齐次通解中,所以设特解为
y=axe^(2x)
y'=ae^(2x)+2axe^(2x)
y''=4ae^(2x)+4axe^(2x)
代入原方程得
4ae^(2x)+4axe^(2x)-2[ae^(2x)+2axe^(2x)]=e^(2x)
整理比较系数得
2a=1
a=1/2
所以特解是
y=1/2xe^(2x)
原方程的通解是
y=C1x+C2e^(2x)+1/2xe^(2x)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版