已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
人气:492 ℃ 时间:2019-10-23 07:26:28
解答
圆C化成标准方程为(x-1)2+(y+2)2=9,假设存在以AB为直径的圆M,圆心M的坐标为(a,b).∵CM⊥l,即kCM•kl=b+2a−1×1=-1∴b=-a-1∴直线l的方程为y-b=x-a,即x-y-2a-1=0∴|CM|2=(|1+2−2a−1|2)2=2(1-a)2∴...
推荐
- 已知圆C:x^2+ y^2-2x+4y-4=0,是否存在斜率为 1的直线 l,使得 l被圆 C截得以弦 AB为直径的圆圆经过原点
- 已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆C截得弦AB,以AB为直径的圆经过原点.
- 已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
- 已知圆C:x^2+y^2-2x+4y+4=0,是否存在斜率1的直线l,使以l被圆C所截得的弦AB为直径的圆经过原点?
- 已知圆C:x^+y^-2x+4y-4=0,是否存在斜率为1的直线L,使L被圆C截得的弦AB为直径的圆过原点
- 2013哈尔滨质检已知f(x)=ax^3-2ax^2+b(2)若f(x)在区间【-2,1】上最大值5,最小值11
- 解方程:(x-2)/0.125-(x+4)/0.2=3.9
- 计算 1+2+3+.+2010+2011+2012+2011+2010+.3+2+1
猜你喜欢