过B作BE⊥AC,E为垂足,∴|AE|=|AC|-|CE|=|AC|-|BD|=a-b,
又|AB|=|FA|+|FB|=a+b,∠BAE=∠AFx=60°.
在直角△AEB中,cos∠BAE=
|AE| |
|AB| |
a−b |
a+b |
∴a=3b
∴
a |
b |
②设直线方程为x=my+
p |
2 |
设A(x1,y1),B(x2,y2),则y1+y2=2pm,∴x1+x2=2pm2+p
∴a+b=|AB|=x1+x2+p=2pm2+2p
当θ≠
π |
2 |
1 |
m |
1 |
tanθ |
2p(tan2θ+1) |
tan2θ |
2p |
sin2θ |
当θ=
π |
2 |
故答案为:3;
2p |
sin2θ |