三角形ABC,AC=8,BC=6,AC垂直于AB,根据AC,AB做正方形ACDE,BCFG,连接EF,求三角形FDB的面积
是ACED,BGFC,ac垂直bc
人气:486 ℃ 时间:2019-10-14 02:20:58
解答
是啊,应该是AC垂直于BC,C是直角.根据AC,BC做正方形.
嗯,懒得上传图,自己对照吧.n多的直角三角形和勾股定理.
在Rt三角形BCF中,由勾股定理,BF=(BC^2+CF^2)^(1/2) = 6√2 ,
在Rt三角形BED中,由勾股定理,BD=(BE^2+DE^2)^(1/2) = (14^2+8^2)^(1/2) = 2√65 ,
在Rt三角形FAD中,由勾股定理,FD=(AF^2+AD^2)^(1/2) = (14^2+8^2)^(1/2) = 2√65 ,
所以,三角形FDB是等腰的,BD=FD.
则同样由勾股定理,底边BF上的高为 [BD^2-(BF/2)^2]^(1/2) = [4*65 - 9*2]^(1/2) = 11√2,
所以,最后面积为 6√2 * 11√2 /2 = 66 .
推荐
- 如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.
- 以三角形ABC的两边AB,AC为边向外作正方形ACDE,正方形ABGF,M为BC的中点,求证AM垂直EF
- 如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.
- 如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.
- 以三角形ABC的两边AB,AC为边向外作正方形ACDE,正方形ABGF,M为BC的中点.证明AM垂直
- V.Complete the dialogue.补全对话.(10分)答案写在后面横线上.
- 一个没有盖的圆柱形铁皮水桶,高是12米,底面直径是高的四分之三.做这个水桶大约用铁皮多少平方分米?(用进一法取近似数值,得数保留整十数平方分米.)
- 1.已知三角形ABC中,AB,BC,CA,边上的中点分别为F(3,-2),D(5,4),E(-1,-8),求BC边上中线AD的长.
猜你喜欢
- 某人站在高楼的平台边缘,
- 7.已知整型变量a=3,b=4,c=5,写出逻辑表达式a
- 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有( ) A.7个 B.8个 C.9个 D.10个
- 把一根长1米的长方体材料平均截成4段后,表面积增加了36平方厘米,原来这根木料的体积是多少?
- 虎,牛,完,元.多一笔或少一笔是什么字?
- 为什么摇晃瓶子后,里面的液体会产生气泡?
- 天上的街市属于联想的句子有?