
则PG=
4 |
3 |
∵∠ACB=∠PCN,∠ABC=∠PNC=90°,
∴△CPN∽△CAB,
∴
PN |
AB |
CN |
CB |
∴PN=
4 |
3 |
则PG=NG-NP=4-
4 |
3 |
4 |
3 |
∴P点的坐标为 (3-x,
4 |
3 |
(2)要使得△MPA为等腰三角形,
①,AP=PM,使得AG=MG即可,
MG=3-x-x=3-2x,AG=x,解得x=1,
②,AM=AP,则AM=3-x,AP=
5 |
3 |
9 |
8 |
③,PM=AM,则AM=3-x,PM=
(3−2x)2+(
|
54 |
43 |
故x=1或
9 |
8 |
54 |
43 |