在四边形ABCD中,CD||AB,AD=BC,对角线AC,BD交于点O,角ACD=60度,点P,Q,S分别为OA,BC,OD中点
求证三角形SPQ是等边三角形
人气:157 ℃ 时间:2020-04-14 14:25:56
解答
由题知,四边形ABCD是以AB、CD为底的等腰梯形,
∠ACD=60°,容易知道,ΔOCD、ΔOAB是等边三角形
连接CS、BP,则CS⊥BD、BP⊥AC
∴P、S、B、C四点共圆,且圆心为BC中点Q
∴QP=QS=BC/2
又P、S是OA、OD中点,
∴PS∥AD
PS=AD/2=BC/2
∴QP=QS=PS=BC/2
∴ΔQPS是等边三角形"容易知道"是怎么知道的? 能否加上理由?从等腰梯形对角线交点作底的垂线,则两侧轴对称。(这应该可以理解或证明吧) 则OD=OC,∠ODC=∠OCD=60° ΔOCD是等边三角形。∵CD||AB ∴∠OAB=∠OBA=60° ΔOAB是等边三角形。
推荐
- 在等腰梯形ABCD中,CD平行AB,对角线AC.BD相交于点O,∠ACD=60度,点S,P,Q分别为OD,OA,BC的中点.
- 在等腰梯形ABCD中,CD‖AB,对角线AC,BD相交于O,∠ACD=60,点S,P,Q分别是OD,OA,BC中点
- 在四边形ABCD中,CD
- 如图所示等腰梯形ABCD中,AD=BC,AB∥CD,对角线AC与BD交于O,∵∠ACD=60°,点S、P、Q分别是OD,OA,BC的中点. 求证:△PQS是等边三角形.
- 如图所示等腰梯形ABCD中,AD=BC,AB∥CD,对角线AC与BD交于O,∵∠ACD=60°,点S、P、Q分别是OD,OA,BC的中点. 求证:△PQS是等边三角形.
- 某银行在某时间段内办理了以下业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元.请你计算一下:银行在这段时间内总计是存入或取出多少元.(用有理数的减法做)
- it is( )and helps me learn a lot( )things.
猜你喜欢