已知O是坐标原点,A(3,0),B(0,3),C(cosa,sina)
(1)若AC·BC=2/5,求sin(a+π/4)的值,(2)若|OA+OC|=√13 ,且a属于(0,π),求向量OB与向量OC的夹角B
人气:197 ℃ 时间:2019-12-13 13:56:42
解答
A(3,0),B(0,3),C(cosa,sina)
(1)
AC=(cosa-3,sina),BC=(cosa,sina-3)
AC·BC=2/5
所以(cosa-3)*cosa+sina*(sina-3)=2/5
所以(cosa)^2-3cosa+(sina)^2-3sina=2/5
所以sina+cosa=1/5
所以√2sin(a+π/4)=1/5
所以sin(a+π/4)=√2/10
(2)
OA+OC=(3,0)+(cosa,sina)=(3+cosa,sina)
因为|OA+OC|=√13
所以(3+cosa)^2+(sina)^2=13
即9+6cosa+(cosa)^2+(sina)^2=13
所以cosa=1/2
且a属于(0,π)
那么a=π/3
所以OB*OC=0*cosa+3*sina=3*sin(π/3)=3√3/2
所以cosB=OB*OC/|OB|*|OC|=(3√3/2)/3*1=√3/2
所以B=π/6
如果不懂,请Hi我,祝学习愉快!
推荐
- 已知A(2,0),B(0,2),C(cosa,sina),O为坐标原点,且0
- A(3,0),B(0,3),C(cosa,sina),O为坐标原点.(1)若向量AC*向量BC=-1,求sina*cosa的值
- 已知A,B,C三点的坐标分别是A(3,0),B(0,3)C(sina,cosa)其中
- 已知A(3.0),B(0.3),C(cosa.sina) 1.若向量AC×向量BC=-1,求sin(a++pai/4)的值 2.o为坐标原点,若向量O
- 已知点A,B,C的坐标分别为A(3,0)B(0,3)c(cosa,sina),a∈(90°,270°)
- 高锰酸钾分解制取氧气的实验中,试管口放置蓬松棉花团的目的是什么?
- 能不能用巧算的方式来计算2的22次方
- 0,1,1,3,4,5,8,(),()怎么填,有什么规律,急
猜你喜欢