A=
a1a2a3 ... an
ana1a2 ... an-1
an-1 an a1 ... an-2
......
a2a3a4 ... a1
设 V=
11 ...1
ε1 ε2...εn
ε1^2 ε2^2...εn^2
ε1^n-1 ε2^n-1 ... εn^n-1
则 |A||V| = |AV| =
f(ε1) f(ε2) ... f(εn)
f(ε1)ε1 f(ε2)ε2 ... f(εn)εn
... ...
f(ε1)ε1^n-1 f(ε2)ε2^n-1 ... f(εn)εn^n-1
= f(ε1)f(ε2)...f(εn)|V|
由于 ε1,ε2,...,εn 两两不同, 所以 |V|≠0
所以 |A|=f(ε1)f(ε2)...f(εn).