数列{an}中a1=2,an+1=an+2的n次方+1,求证数列{an-2的n次方}为等差数列
人气:413 ℃ 时间:2019-10-18 02:45:26
解答
已知,
数列{an}中a1=2,
a(n+1)=an+2^n+1
所以,两端各减2^(n+1)得
a(n+1)-2^(n+1)=an-2^n+1
令bn=an-2^n,b1=0
所以,
b(n+1)=bn+1
所以知{bn}为等差数列
所以,数列{an-2^n}为等差数列
推荐
- 设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2,设bn=an比2的n次方,求证数列bn为等差数列
- 在数列an中,a1=1,an+1 2an+2的n次方
- 在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An
- 在数列an中,a1=1,a= 2an+2的n次方 1.设bn=an/2的n-1次方,证明:数列bn是等差数列
- 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn
- 4+3X=40怎么解
- 初中阶段应该掌握那些语法和单词?
- ∫1/(1+³√x)dx
猜你喜欢