> 数学 >
已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2
人气:356 ℃ 时间:2019-09-23 06:57:53
解答
证明:过点A作AM∥BC,交FD延长线于点M,连接EM.
∵AM∥BC,
∴∠MAE=∠ACB=90°,∠MAD=∠B.
∵AD=BD,∠ADM=∠BDF,
∴△ADM≌△BDF.
∴AM=BF,MD=DF.
又∵DE⊥DF,∴EF=EM.
∴AE2+BF2=AE2+AM2=EM2=EF2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版