已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=√2/2,左,右焦点分别为F1,F2,点P(2,√3)
点F2在PF1的中垂线上.(1)求椭圆C的方程(这个问不用回答了)(2)设直线l:y=kx+m与椭圆C交于M.N两点,直线F2M与F2N的的倾斜角分别为α,β,且α+β=π(派),试问直线l是否过定点?若过,求该点的坐标.
人气:121 ℃ 时间:2019-08-21 12:39:43
解答
MN存在斜率,设y=kx+m.
x²/2+y²=1.y=kx+m
(2k²+1)x²+4kmx+2m²-2=0.
设M(x1,y1),N(x2,y2),
x1+x2=-4km/2k²+1,x1x2=2m²-2/2k²+1,且 kF2M=kx1+m/x1-1,kF2N=kx2+m/x2-1
由已知α+β=π,
kF2M+kF2N=0,
kx1+m/x1-1+kx2+m/x2-1=0.
2kx1x2+(m-k)(x1+x2-2m=0
∴ 2k•﹙2m²-2/2k²+1﹚-4km(m-k)/﹙2k²+1﹚-2m=0
m=-2k.
∴y=k(x-2),(2,0)第一问也解一下,谢谢。为什么由已知α+β=π,kF2M+kF2N=0?α+β=π可推断两直线斜率之和为0。即kF2M+kF2N=0。e=√2/2c/a=√2/2,其中 c=√a2-b2,F1(-c,0),F2(c,0)又点F2在线段PF1的中垂线上∴ |F1F2|=|PF2|,∴(2c)2=(√3)2+(2-c)2c=1,a2=2,b2=1,∴ x2/2+y2=1.
推荐
- 椭圆y2a2+x2b2=1(a>b>0)的两焦点为F1(0,-c),F2(0,c)(c>0),离心率e=32,焦点到椭圆上点的最短距离为2-3,求椭圆的方程.
- 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,F1,F2分别为椭圆C的左右焦点,若椭圆C的焦距为2.
- 已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=√2/2,左、右焦点分别为F1.F2,定点p(2,√3),且|F1F2|=|PF2
- 已知椭圆的两焦点为F1(-√3,0),F2(√3,0),离心率e=√3/2
- 如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号2/2,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(根号2+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点(1)求
- He thanked me a lot for my help 改同义句
- 小刚看一本故事书看了3天还有18页以后每天看5页至少还要看几天
- 为什么在北半球的夏半年,北半球各纬度昼长大于夜长,纬度越高,昼越长,夜越短?什么是昼弧?
猜你喜欢