> 数学 >
直径AB、CD互相垂直,P为弧BC上一动点,连PC、PA、PD、PB,求AC2-AD2/PCXPD是定值
人气:436 ℃ 时间:2020-06-04 21:14:34
解答
连AC,AD,BD
将△ACP绕A点顺时针旋转90°,使AC与AD重合(依AB⊥CD知AC=AD)点P旋转到Q点
∴AQ=AP,CP=QD
∵∠PAQ=90°,AQ=AP
∵∠ADQ+∠ADP=∠ACP+∠ADP=180°,∴三点共线
∴∠Q=∠KPD=45°
PQ²=PA²+AQ²
PQ=2AP
即CP+DP=根号二AP
将△PBD绕D点逆时针旋转90°使BD与AD重合,点P旋转到K点
∴PD=KD,AK=PB
∵∠KDP=90°,PD=KD
∵∠KAD+∠PAD=∠PBD+∠PAD=180°,∴三点共线
∴∠K=∠KPD=45°
KP²=KD²+PD²
KP=根号二DP
即KA+AP=根号二DP
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版