证明方程x2+2ax+4a-4=0一定有两个实数根 急 急 急
人气:328 ℃ 时间:2019-10-19 17:28:32
解答
x2+2ax+4a-4=0
△=4a²-4(4a-4)
=4[a²-4a+4]
=4(a-2)²≥0
所以,原方程一定有两个实数根
推荐
- 已知关于x的方程(a^2-4a+5)x^2+2ax+4=0 (1)试证明无论a取任何实数,这个方程都是一元二次方程
- 若三个方程x2+4ax+3-4a=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数根,试求a的范围?
- 如果关于x的三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中,有且只有一个方程有实数解,则实数a的取值范围--------
- 己知下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.
- 己知下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.
- 因式分解:1.-15a的3次方b²+9a²b²-3ab的3次方;2.(x²+1)²-4x²;
- 有90张电影票,如果先分给五年级,则六年级得到票的同学仅占二分之一;如果先发给六年级,则五年级得到票的同学仅占三分之一,五、六年级各有学生多少人?
- 两个数相乘积是20.8,如果一个因数扩大到原来的3倍,另一个因数缩小到原来的四分之
猜你喜欢